The Right Haar Measure
It can also be proved that there exists a unique (up to multiplication by a positive constant) right-translation-invariant Borel measure ν satisfying the above regularity conditions and being finite on compact sets, but it need not coincide with the left-translation-invariant measure μ. The left and right Haar measures are the same only for so-called unimodular groups (see below). It is quite simple, though, to find a relationship between μ and ν.
Indeed, for a Borel set S, let us denote by the set of inverses of elements of S. If we define
then this is a right Haar measure. To show right invariance, apply the definition:
Because the right measure is unique, it follows that μ-1 is a multiple of ν and so
for all Borel sets S, where k is some positive constant.
Read more about this topic: Haar Measure
Famous quotes containing the word measure:
“What cannot stand must fall; and the measure of our sincerity and therefore of the respect of men, is the amount of health and wealth we will hazard in the defence of our right. An old farmer, my neighbor across the fence, when I ask him if he is not going to town-meeting, says: No, t is no use balloting, for it will not stay; but what you do with the gun will stay so.”
—Ralph Waldo Emerson (18031882)