In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The space of pure states of a quantum system is given by the one-dimensional subspaces of the corresponding Hilbert space (or the "points" of the projective Hilbert space). In a two-dimensional Hilbert space this is simply the complex projective line, which is a geometrical sphere.
The Bloch sphere is a unit 2-sphere, with each pair of antipodal points corresponding to mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors and, respectively, which in turn might correspond e.g. to the spin-up and spin-down states of an electron. This choice is arbitrary, however. The points on the surface of the sphere correspond to the pure states of the system, whereas the interior points correspond to the mixed states. The Bloch sphere may be generalized to an n-level quantum system but then the visualization is less useful.
In optics, the Bloch sphere is also known as the Poincaré sphere and specifically represents different types of polarizations. See the Jones Vector for a detailed list of the 6 common polarization types and how they map on to the surface of this sphere.
The natural metric on the Bloch sphere is the Fubini–Study metric.
Read more about Bloch Sphere: Definition, A Generalization For Pure States, The Geometry of Density Operators
Famous quotes containing the word sphere:
“Everything goes, everything comes back; eternally rolls the wheel of being. Everything dies, everything blossoms again; eternally runs the year of being. Everything breaks, everything is joined anew; eternally the same house of being is built. Everything parts, everything greets every other thing again; eternally the ring of being remains faithful to itself. In every Now, being begins; round every Here rolls the sphere There. The center is everywhere. Bent is the path of eternity.”
—Friedrich Nietzsche (18441900)