Group Homomorphism - Examples

Examples

  • Consider the cyclic group Z/3Z = {0, 1, 2} and the group of integers Z with addition. The map h : ZZ/3Z with h(u) = u mod 3 is a group homomorphism. It is surjective and its kernel consists of all integers which are divisible by 3.
  • Consider and group G:=\left\{\begin{pmatrix}
a & b \\
0 & 1 \end{pmatrix}\mid a>0,b\in\mathbb{R}\right\} with . then functions of the form
s.t. f_u \left(\begin{pmatrix}
a & b \\
0 & 1 \end{pmatrix}\right)=a^u are group homomorphisms.
  • Consider multiplicative group of positive real numbers with then functions of the form
s.t. are group homomorphisms.
  • The exponential map yields a group homomorphism from the group of real numbers R with addition to the group of non-zero real numbers R* with multiplication. The kernel is {0} and the image consists of the positive real numbers.
  • The exponential map also yields a group homomorphism from the group of complex numbers C with addition to the group of non-zero complex numbers C* with multiplication. This map is surjective and has the kernel { 2πki : k in Z }, as can be seen from Euler's formula. Fields like R and C that have homomorphisms from their additive group to their multiplicative group are thus called exponential fields.

Read more about this topic:  Group Homomorphism

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)