In mathematics, given two groups (G, *) and (H, ·), a group homomorphism from
(G, *) to (H, ·) is a function h : G → H such that for all u and v in G it holds that
where the group operation on the left hand side of the equation is that of G and on the right hand side that of H.
From this property, one can deduce that h maps the identity element eG of G to the identity element eH of H, and it also maps inverses to inverses in the sense that
Hence one can say that h "is compatible with the group structure".
Older notations for the homomorphism h(x) may be xh, though this may be confused as an index or a general subscript. A more recent trend is to write group homomorphisms on the right of their arguments, omitting brackets, so that h(x) becomes simply x h. This approach is especially prevalent in areas of group theory where automata play a role, since it accords better with the convention that automata read words from left to right.
In areas of mathematics where one considers groups endowed with additional structure, a homomorphism sometimes means a map which respects not only the group structure (as above) but also the extra structure. For example, a homomorphism of topological groups is often required to be continuous.
Read more about Group Homomorphism: Intuition, Image and Kernel, Examples, The Category of Groups, Types of Homomorphic Maps, Homomorphisms of Abelian Groups
Famous quotes containing the word group:
“With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.”
—Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)