Grothendieck Group - Universal Property

Universal Property

In its simplest form, the Grothendieck group of a commutative monoid is the universal way of making that monoid into an abelian group. Let M be a commutative monoid. Its Grothendieck group N should have the following universal property: There exists a monoid homomorphism

i:MN

such that for any monoid homomorphism

f:MA

from the commutative monoid M to an abelian group A, there is a unique group homomorphism

g:NA

such that

f=gi.

In the language of category theory, the functor that sends a commutative monoid M to its Grothendieck group N is left adjoint to the forgetful functor from the category of abelian groups to the category of commutative monoids.

Read more about this topic:  Grothendieck Group

Famous quotes containing the words universal and/or property:

    The poor, stupid, free American citizen! Free to starve, free to tramp the highways of this great country, he enjoys universal suffrage, and by that right, he has forged chains around his limbs. The reward that he receives is stringent labor laws prohibiting the right of boycott, of picketing, of everything, except the right to be robbed of the fruits of his labor.
    Emma Goldman (1869–1940)

    I have no concern with any economic criticisms of the communist system; I cannot enquire into whether the abolition of private property is expedient or advantageous. But I am able to recognize that the psychological premises on which the system is based are an untenable illusion. In abolishing private property we deprive the human love of aggression of one of its instruments ... but we have in no way altered the differences in power and influence which are misused by aggressiveness.
    Sigmund Freud (1856–1939)