Grothendieck Group

In mathematics, the Grothendieck group construction in abstract algebra constructs an abelian group from a commutative monoid in the most universal way. It takes its name from the more general construction in category theory, introduced by Alexander Grothendieck in his fundamental work of the mid-1950s that resulted in the development of K-theory, which led to his proof of the Grothendieck-Riemann-Roch theorem. The Grothendieck group is denoted by K or R.

Read more about Grothendieck Group:  Universal Property, Explicit Construction, Grothendieck Group and Extensions, Grothendieck Groups of Exact Categories, Grothendieck Groups of Triangulated Categories, Examples

Famous quotes containing the word group:

    Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patrick’s Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldn’t some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?
    Anna Quindlen (b. 1953)