Derivation of Shortest Paths
To prove that the minor arc of a great circle is the shortest path connecting two points on the surface of a sphere, one has to apply calculus of variations to it.
Consider the class of all regular paths from a point p to another point q. Introduce spherical coordinates so that p coincides with the north pole. Any curve on the sphere that does not intersect either pole, except possibly at the endpoints, can be parametrized by
provided we allow φ to take on arbitrary real values. The infinitesimal arc length in these coordinates is
So the length of a curve γ from p to q is a functional of the curve given by
Note that S is at least the length of the meridian from p to q:
Since the starting point and ending point are fixed, S is minimized if and only if φ' = 0, so the curve must lie on a meridian of the sphere φ = φ0 = constant. In Cartesian coordinates, this is
which is a plane through the origin, i.e., the center of the sphere.
Read more about this topic: Great Circle
Famous quotes containing the words shortest and/or paths:
“Cultivated labor drives out brute labor. An infinite number of shrewd men, in infinite years, have arrived at certain best and shortest ways of doing, and this accumulated skill in arts, cultures, harvestings, curings, manufactures, navigations, exchanges, constitutes the worth of our world to-day.”
—Ralph Waldo Emerson (18031882)
“This is the one of whom the prophet Isaiah spoke when he said, The voice of one crying out in the wilderness: Prepare the way of the Lord, make his paths straight. ”
—Bible: New Testament, Matthew 3:3.