Derivation of Shortest Paths
To prove that the minor arc of a great circle is the shortest path connecting two points on the surface of a sphere, one has to apply calculus of variations to it.
Consider the class of all regular paths from a point p to another point q. Introduce spherical coordinates so that p coincides with the north pole. Any curve on the sphere that does not intersect either pole, except possibly at the endpoints, can be parametrized by
provided we allow φ to take on arbitrary real values. The infinitesimal arc length in these coordinates is
So the length of a curve γ from p to q is a functional of the curve given by
Note that S is at least the length of the meridian from p to q:
Since the starting point and ending point are fixed, S is minimized if and only if φ' = 0, so the curve must lie on a meridian of the sphere φ = φ0 = constant. In Cartesian coordinates, this is
which is a plane through the origin, i.e., the center of the sphere.
Read more about this topic: Great Circle
Famous quotes containing the words shortest and/or paths:
“The shortest route is not the most direct one, but rather the one where the most favorable winds swell our sails:Mthat is the lesson that seafarers teach. Not to abide by this lesson is to be obstinate: here, firmness of character is tainted with stupidity.”
—Friedrich Nietzsche (18441900)
“Fair is my Love, and cruel as shes fair
Her brow shades frowns, although her eyes are sunny;
Her smiles are lightning, though her pride despair;
And her disdains are gall, her favours honey.
A modest maid, decked with a blush of honour,
Whose feet do tread green paths of youth and love,”
—Samuel Daniel (15621619)