A great circle, also known as an orthodrome or Riemannian circle, of a sphere is the intersection of the sphere and a plane which passes through the center point of the sphere, as opposed to a general circle of a sphere where the plane is not required to pass through the center. (A small circle is the intersection of the sphere and a plane which does not pass through the center.) Any diameter of any great circle coincides with a diameter of the sphere, and therefore all great circles have the same circumference as each other, and have the same center as the sphere. A great circle is the largest circle that can be drawn on any given sphere. Every circle in Euclidean space is a great circle of exactly one sphere.
For any two points on the surface of a sphere there is a great circle through the two points. The minor arc of a great circle between two points is the shortest surface-path between them. In this sense the minor arc is analogous to “straight lines” in spherical geometry. The length of the minor arc of a great circle is taken as the distance between two points on a surface of a sphere, namely the great-circle distance. The great circles are the geodesics of the sphere.
In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with two-planes that pass through the origin in the Euclidean space Rn+1.
Read more about Great Circle: Earth Geodesics, Derivation of Shortest Paths
Famous quotes containing the word circle:
“Wise child, didst hastily return
And madst thy mothers womb thine urn.
How summed a circle didst thou leave mankind
Of deepest lore, could we the center find!”
—Ben Jonson (15721637)