Boundary Energy
The energy of a low-angle boundary is dependent on the degree of misorientation between the neighbouring grains up to the transition to high-angle status. In the case of simple tilt boundaries the energy of a boundary made up of dislocations with Burgers vector b and spacing h is predicted by the Read-Shockley equation:
where θ = b/h, γ0 = Gb/4 π(1 − ν), A = 1 + ln(b/2 πr0), G is the shear modulus, ν is poisson's ratio, and r0 is the radius of the dislocation core. It can be seen that as the energy of the boundary increases the energy per dislocation decreases. Thus there is a driving force to produce fewer, more misoriented boundaries (i.e., grain growth).
The situation in high-angle boundaries is more complex. Although theory predicts that the energy will be a minimum for ideal CSL configurations, with deviations requiring dislocations and other energetic features, empirical measurements suggest the relationship is more complicated. Some predicted troughs in energy are found as expected while others missing or substantially reduced. Surveys of the available experimental data have indicated that simple relationships such as low Σ are misleading:
It is concluded that no general and useful criterion for low energy can be enshrined in a simple geometric framework. Any understanding of the variations of interfacial energy must take account of the atomic structure and the details of the bonding at the interface.
Read more about this topic: Grain Boundary
Famous quotes containing the words boundary and/or energy:
“No man has a right to fix the boundary of the march of a nation; no man has a right to say to his country, Thus far shalt thou go and no further.”
—Charles Stewart Parnell (18461891)
“Perhaps catastrophe is the natural human environment, and even though we spend a good deal of energy trying to get away from it, we are programmed for survival amid catastrophe.”
—Germaine Greer (b. 1939)