Glossary of Topology - S

S

Scott
The Scott topology on a poset is that in which the open sets are those Upper sets inaccessible by directed joins.
Second category
See Meagre.
Second-countable
A space is second-countable or perfectly separable if it has a countable base for its topology. Every second-countable space is first-countable, separable, and Lindelöf.
Semilocally simply connected
A space X is semilocally simply connected if, for every point x in X, there is a neighbourhood U of x such that every loop at x in U is homotopic in X to the constant loop x. Every simply connected space and every locally simply connected space is semilocally simply connected. (Compare with locally simply connected; here, the homotopy is allowed to live in X, whereas in the definition of locally simply connected, the homotopy must live in U.)
Semiregular
A space is semiregular if the regular open sets form a base.
Separable
A space is separable if it has a countable dense subset.
Separated
Two sets A and B are separated if each is disjoint from the other's closure.
Sequentially compact
A space is sequentially compact if every sequence has a convergent subsequence. Every sequentially compact space is countably compact, and every first-countable, countably compact space is sequentially compact.
Short map
See metric map
Simply connected
A space is simply connected if it is path-connected and every loop is homotopic to a constant map.
Smaller topology
See Coarser topology.
Sober
In a sober space, every irreducible closed subset is the closure of exactly one point: that is, has a unique generic point.
Star
The star of a point in a given cover of a topological space is the union of all the sets in the cover that contain the point. See star refinement.
-Strong topology
Let be a map of topological spaces. We say that has the -strong topology if, for every subset, one has that is open in if and only if is open in
Stronger topology
See Finer topology. Beware, some authors, especially analysts, use the term weaker topology.
Subbase
A collection of open sets is a subbase (or subbasis) for a topology if every non-empty proper open set in the topology is a union of finite intersections of sets in the subbase. If B is any collection of subsets of a set X, the topology on X generated by B is the smallest topology containing B; this topology consists of the empty set, X and all unions of finite intersections of elements of B.
Subbasis
See Subbase.
Subcover
A cover K is a subcover (or subcovering) of a cover L if every member of K is a member of L.
Subcovering
See Subcover.
Submaximal space
A topological space is said to be submaximal if every subset of it is locally closed, that is, every subset is the intersection of an open set and a closed set.

Here are some facts about submaximality as a property of topological spaces:

  • Every door space is submaximal.
  • Every submaximal space is weakly submaximal viz every finite set is locally closed.
  • Every submaximal space is irresolvable
Subspace
If T is a topology on a space X, and if A is a subset of X, then the subspace topology on A induced by T consists of all intersections of open sets in T with A. This construction is dual to the construction of the quotient topology.

Read more about this topic:  Glossary Of Topology