Glossary of Ring Theory - Definition of A Ring

Definition of A Ring

Ring
A ring is a set R with two binary operations, usually called addition (+) and multiplication (*), such that R is an abelian group under addition, a monoid under multiplication, and such that multiplication is both left and right distributive over addition. Note that rings are assumed to have multiplicative identities unless otherwise noted. The additive identity is denoted by 0 and the multiplicative identity by 1.
Subring
A subset S of the ring (R,+,*) which remains a ring when + and * are restricted to S and contains the multiplicative identity 1 of R is called a subring of R.

Read more about this topic:  Glossary Of Ring Theory

Famous quotes containing the words definition of, definition and/or ring:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    I saw Eternity the other night,
    Like a great ring of pure and endless light,
    Henry Vaughan (1622–1695)