Notation
A hypergeometric series is formally defined as a power series
in which the ratio of successive coefficients is a rational function of n. That is,
where A(n) and B(n) are polynomials in n.
For example, in the case of the series for the exponential function,
- ,
βn = n!−1 and βn+1/βn = 1/(n+1). So this satisfies the definition with A(n) = 1 and B(n) = n + 1.
It is customary to factor out the leading term, so β0 is assumed to be 1. The polynomials can be factored into linear factors of the form (aj + n) and (bk + n) respectively, where the aj and bk are complex numbers.
For historical reasons, it is assumed that (1 + n) is a factor of B. If this is not already the case then both A and B can be multiplied by this factor; the factor cancels so the terms are unchanged and there is no loss of generality.
The ratio between consecutive coefficients now has the form
- ,
where c and d are the leading coefficients of A and B. The series then has the form
- ,
or, by scaling z by the appropriate factor and rearranging,
- .
This has the form of an exponential generating function. The standard notation for this series is
- or
Using the rising factorial or Pochhammer symbol:
- ,
this can be written
(Note that this use of the Pochhammer symbol is not standard, however it is the standard usage in this context.)
Read more about this topic: Generalized Hypergeometric Function