Hypergeometric Functions

Hypergeometric Functions

In mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Arthur Erdélyi, Wilhelm Magnus, and Fritz Oberhettinger et al. (1953), Abramowitz & Stegun (1965), and Daalhuis (2010).

Read more about Hypergeometric Functions:  History, The Hypergeometric Series, Special Cases, The Hypergeometric Differential Equation, Gauss' Contiguous Relations, Transformation Formulas, Values At Special Points z

Famous quotes containing the word functions:

    Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others’. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinery—more wonderful because it is not machinery at all or predictable.
    Kate Millett (b. 1934)