Generalizations
The generalized hypergeometric function is linked to the Meijer G-function and the MacRobert E-function. Hypergeometric series were generalised to several variables, for example by Paul Emile Appell; but a comparable general theory took long to emerge. Many identities were found, some quite remarkable. A generalization, the q-series analogues, called the basic hypergeometric series, were given by Eduard Heine in the late nineteenth century. Here, the ratios considered of successive terms, instead of a rational function of n, are a rational function of . Another generalization, the elliptic hypergeometric series, are those series where the ratio of terms is an elliptic function (a doubly periodic meromorphic function) of n.
During the twentieth century this was a fruitful area of combinatorial mathematics, with numerous connections to other fields. There are a number of new definitions of general hypergeometric functions, by Aomoto, Israel Gelfand and others; and applications for example to the combinatorics of arranging a number of hyperplanes in complex N-space (see arrangement of hyperplanes).
Special hypergeometric functions occur as zonal spherical functions on Riemannian symmetric spaces and semi-simple Lie groups. Their importance and role can be understood through the following example: the hypergeometric series 2F1 has the Legendre polynomials as a special case, and when considered in the form of spherical harmonics, these polynomials reflect, in a certain sense, the symmetry properties of the two-sphere or, equivalently, the rotations given by the Lie group SO(3). In tensor product decompositions of concrete representations of this group Clebsch-Gordan coefficients are met, which can be written as 3F2 hypergeometric series.
Bilateral hypergeometric series are a generalization of hypergeometric functions where one sums over all integers, not just the positive ones.
Fox–Wright functions are a generalization of generalized hypergeometric functions where the Pochhammer symbols in the series expression are generalised to gamma functions of linear expressions in the index n.
Read more about this topic: Generalized Hypergeometric Function