A Gaussian process is a stochastic process Xt, t ∈ T, for which any finite linear combination of samples has a joint Gaussian distribution. More accurately, any linear functional applied to the sample function Xt will give a normally distributed result. Notation-wise, one can write X ∼ GP(m, K), meaning: the random function X "is distributed as a GP with mean function m and covariance function K". When the input vector t is two- or multi-dimensional a Gaussian process might be also known as a Gaussian random field.
Some authors assume the random variables Xt have mean zero; this greatly simplifies calculations without loss of generality and allows the mean square properties of the process to be entirely determined by the covariance function K.
Read more about Gaussian Process: Alternative Definitions, Covariance Functions, Important Gaussian Processes, Applications
Famous quotes containing the word process:
“The a priori method is distinguished for its comfortable conclusions. It is the nature of the process to adopt whatever belief we are inclined to, and there are certain flatteries to the vanity of man which we all believe by nature, until we are awakened from our pleasing dream by rough facts.”
—Charles Sanders Peirce (18391914)