Gaussian Process - Covariance Functions

Covariance Functions

A key fact of Gaussian processes is that they can be completely defined by their second-order statistics. Thus, if a Gaussian process is assumed to have mean zero, defining the covariance function completely defines the process' behaviour. The covariance matrix K between all the pair of points x and x' specifies a distribution on functions and is known as the Gram matrix. Importantly, because every valid covariance function is a scalar product of vectors, by construction the matrix K is a non-negative definite matrix. Equivalently, the covariance function K is a non-negative definite function in the sense that for every pair x and x', K(x,x')≥ 0, if K(,) >0 then K is called strictly positive definite. Importantly the non-negative definiteness of K enables its spectral decomposition using the Karhunen-Loeve expansion. Basic aspects that can be defined through the covariance function are the process' stationarity, isotropy, smoothness and periodicity.

Stationarity refers to the process' behaviour regarding the separation of any two points x and x' . If the process is stationary, it depends on their separation, x - x', while if non-stationary it depends on the actual position of the points x and x'; an example of a stationary process is the Ornstein–Uhlenbeck process. On the contrary, the special case of an appropriate limit of an Ornstein–Uhlenbeck process, a Brownian motion process, is non-stationary.

If the process depends only on |x - x'|, the Euclidean distance (not the direction) between x and x' then the process is considered isotropic. A process that is concurrently stationary and isotropic is considered to be homogeneous; in practice these properties reflect the differences (or rather the lack of them) in the behaviour of the process given the location of the observer.

Ultimately Gaussian processes translate as taking priors on functions and the smoothness of these priors can be induced by the covariance function. If we expect that for "near-by" input points x and x' their corresponding output points y and y' to be "near-by" also, then the assumption of smoothness is present. If we wish to allow for significant displacement then we might choose a rougher covariance function. Extreme examples of the behaviour is the covariance function for the standard Wiener process and the squared exponential where the former is a Dirac delta distribution and the latter infinitely differentiable.

Periodicity refers to inducing periodic patterns within the behaviour of the process. Formally, this is achieved by mapping the input x to a two dimensional vector u(x) =(cos(x), sin(x)).

Read more about this topic:  Gaussian Process

Famous quotes containing the word functions:

    Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.
    Friedrich Nietzsche (1844–1900)