Historical Background
The ring of Gaussian integers was introduced by Carl Friedrich Gauss in his second monograph on quartic reciprocity (1832) (see ). The theorem of quadratic reciprocity (which he had first succeeded in proving in 1796) relates the solvability of the congruence x2 ≡ q (mod p) to that of x2 ≡ p (mod q). Similarly, cubic reciprocity relates the solvability of x3 ≡ q (mod p) to that of x3 ≡ p (mod q), and biquadratic (or quartic) reciprocity is a relation between x4 ≡ q (mod p) and x4 ≡ p (mod q). Gauss discovered that the law of biquadratic reciprocity and its supplements were more easily stated and proved as statements about "whole complex numbers" (i.e. the Gaussian integers) than they are as statements about ordinary whole numbers (i.e. the integers).
In a footnote he notes that the Eisenstein integers are the natural domain for stating and proving results on cubic reciprocity and indicates that similar extensions of the integers are the appropriate domains for studying higher reciprocity laws.
This paper not only introduced the Gaussian integers and proved they are a unique factorization domain, it also introduced the terms norm, unit, primary, and associate, which are now standard in algebraic number theory.
Read more about this topic: Gaussian Integer
Famous quotes containing the words historical and/or background:
“Among the virtues and vices that make up the British character, we have one vice, at least, that Americans ought to view with sympathy. For they appear to be the only people who share it with us. I mean our worship of the antique. I do not refer to beauty or even historical association. I refer to age, to a quantity of years.”
—William Golding (b. 1911)
“Pilate with his question What is truth? is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.”
—Friedrich Nietzsche (18441900)