Further Informal Discussion
In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface bends by different amounts in different directions at that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, i.e., the gradient of f vanishes (this can always be attained by a suitable rigid motion). Then the Gaussian curvature of the surface at p is the determinant of the Hessian matrix of f (being the product of the eigenvalues of the Hessian). (Recall that the Hessian is the 2-by-2 matrix of second derivatives.) This definition allows one immediately to grasp the distinction between cup/cap versus saddle point.
Read more about this topic: Gaussian Curvature
Famous quotes containing the words informal and/or discussion:
“We as a nation need to be reeducated about the necessary and sufficient conditions for making human beings human. We need to be reeducated not as parentsbut as workers, neighbors, and friends; and as members of the organizations, committees, boardsand, especially, the informal networks that control our social institutions and thereby determine the conditions of life for our families and their children.”
—Urie Bronfenbrenner (b. 1917)
“We should seek by all means in our power to avoid war, by analysing possible causes, by trying to remove them, by discussion in a spirit of collaboration and good will. I cannot believe that such a programme would be rejected by the people of this country, even if it does mean the establishment of personal contact with the dictators.”
—Neville Chamberlain (18691940)