Application To Classical Problems
The birth of Galois theory was originally motivated by the following question, whose answer is known as the Abel–Ruffini theorem.
- Why is there no formula for the roots of a fifth (or higher) degree polynomial equation in terms of the coefficients of the polynomial, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc)?
Galois theory not only provides a beautiful answer to this question, it also explains in detail why it is possible to solve equations of degree four or lower in the above manner, and why their solutions take the form that they do. Further, it gives a conceptually clear, and often practical, means of telling when some particular equation of higher degree can be solved in that manner.
Galois theory also gives a clear insight into questions concerning problems in compass and straightedge construction. It gives an elegant characterisation of the ratios of lengths that can be constructed with this method. Using this, it becomes relatively easy to answer such classical problems of geometry as
- Which regular polygons are constructible polygons?
- Why is it not possible to trisect every angle using a compass and straightedge?
Read more about this topic: Galois Theory
Famous quotes containing the words application to, application, classical and/or problems:
“If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The main object of a revolution is the liberation of man ... not the interpretation and application of some transcendental ideology.”
—Jean Genet (19101986)
“Culture is a sham if it is only a sort of Gothic front put on an iron buildinglike Tower Bridgeor a classical front put on a steel framelike the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a livingnot something added, like sugar on a pill.”
—Eric Gill (18821940)
“The problems of all of humanity can only be solved by all of humanity.”
—Friedrich Dürrenmatt (19211990)