Application To Classical Problems
The birth of Galois theory was originally motivated by the following question, whose answer is known as the Abel–Ruffini theorem.
- Why is there no formula for the roots of a fifth (or higher) degree polynomial equation in terms of the coefficients of the polynomial, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc)?
Galois theory not only provides a beautiful answer to this question, it also explains in detail why it is possible to solve equations of degree four or lower in the above manner, and why their solutions take the form that they do. Further, it gives a conceptually clear, and often practical, means of telling when some particular equation of higher degree can be solved in that manner.
Galois theory also gives a clear insight into questions concerning problems in compass and straightedge construction. It gives an elegant characterisation of the ratios of lengths that can be constructed with this method. Using this, it becomes relatively easy to answer such classical problems of geometry as
- Which regular polygons are constructible polygons?
- Why is it not possible to trisect every angle using a compass and straightedge?
Read more about this topic: Galois Theory
Famous quotes containing the words application to, application, classical and/or problems:
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.”
—François, Duc De La Rochefoucauld (16131680)
“Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.”
—Johann Wolfgang Von Goethe (17491832)
“Hats have never at all been one of the vexing problems of my life, but, indifferent as I am, these render me speechless. I should think a well-taught and tasteful American milliner would go mad in England, and eventually hang herself with bolts of green and scarlet ribbonthe favorite colour combination in Liverpool.”
—Willa Cather (18761947)