Universal Covering Space
If X is a topological space that is path connected, locally path connected and locally simply connected, then it has a simply connected universal covering space on which the fundamental group π(X,x0) acts freely by deck transformations with quotient space X. This space can be constructed analogously to the fundamental group by taking pairs (x, γ), where x is a point in X and γ is a homotopy class of paths from x0 to x and the action of π(X, x0) is by concatenation of paths. It is uniquely determined as a covering space.
Read more about this topic: Fundamental Group
Famous quotes containing the words universal, covering and/or space:
“We can most safely achieve truly universal tolerance when we respect that which is characteristic in the individual and in nations, clinging, though, to the conviction that the truly meritorious is unique by belonging to all of mankind.”
—Johann Wolfgang Von Goethe (17491832)
“You had to have seen the corpses lying there in front of the schoolthe men with their caps covering their facesto know the meaning of class hatred and the spirit of revenge.”
—Alfred Döblin (18781957)
“Mere human beings cant afford to be fanatical about anything.... Not even about justice or loyalty. The fanatic for justice ends by murdering a million helpless people to clear a space for his law-courts. If we are to survive on this planet, there must be compromises.”
—Storm Jameson (18911986)