Fundamental Group - Relationship To First Homology Group

Relationship To First Homology Group

The fundamental groups of a topological space X are related to its first singular homology group, because a loop is also a singular 1-cycle. Mapping the homotopy class of each loop at a base point x0 to the homology class of the loop gives a homomorphism from the fundamental group π1(X, x0) to the homology group H1(X). If X is path-connected, then this homomorphism is surjective and its kernel is the commutator subgroup of π1(X, x0), and H1(X) is therefore isomorphic to the abelianization of π1(X, x0). This is a special case of the Hurewicz theorem of algebraic topology.

Read more about this topic:  Fundamental Group

Famous quotes containing the words relationship to, relationship and/or group:

    ... the Wall became a magnet for citizens of every generation, class, race, and relationship to the war perhaps because it is the only great public monument that allows the anesthetized holes in the heart to fill with a truly national grief.
    Adrienne Rich (b. 1929)

    Some [adolescent] girls are depressed because they have lost their warm, open relationship with their parents. They have loved and been loved by people whom they now must betray to fit into peer culture. Furthermore, they are discouraged by peers from expressing sadness at the loss of family relationships—even to say they are sad is to admit weakness and dependency.
    Mary Pipher (20th century)

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)