Fundamental Group - Edge-path Group of A Simplicial Complex

Edge-path Group of A Simplicial Complex

If X is a connected simplicial complex, an edge-path in X is defined to be a chain of vertices connected by edges in X. Two edge-paths are said to be edge-equivalent if one can be obtained from the other by successively switching between an edge and the two opposite edges of a triangle in X. If v is a fixed vertex in X, an edge-loop at v is an edge-path starting and ending at v. The edge-path group E(X, v) is defined to be the set of edge-equivalence classes of edge-loops at v, with product and inverse defined by concatenation and reversal of edge-loops.

The edge-path group is naturally isomorphic to π1(|X|, v), the fundamental group of the geometric realisation |X| of X. Since it depends only on the 2-skeleton X2 of X (i.e. the vertices, edges and triangles of X), the groups π1(|X|,v) and π1(|X2|, v) are isomorphic.

The edge-path group can be described explicitly in terms of generators and relations. If T is a maximal spanning tree in the 1-skeleton of X, then E(X, v) is canonically isomorphic to the group with generators (the oriented edge-paths of X not occurring in T) and relations (the edge-equivalences corresponding to triangles in X). A similar result holds if T is replaced by any simply connected—in particular contractible—subcomplex of X. This often gives a practical way of computing fundamental groups and can be used to show that every finitely presented group arises as the fundamental group of a finite simplicial complex. It is also one of the classical methods used for topological surfaces, which are classified by their fundamental groups.

The universal covering space of a finite connected simplicial complex X can also be described directly as a simplicial complex using edge-paths. Its vertices are pairs (w,γ) where w is a vertex of X and γ is an edge-equivalence class of paths from v to w. The k-simplices containing (w,γ) correspond naturally to the k-simplices containing w. Each new vertex u of the k-simplex gives an edge wu and hence, by concatenation, a new path γu from v to u. The points (w,γ) and (u, γu) are the vertices of the "transported" simplex in the universal covering space. The edge-path group acts naturally by concatenation, preserving the simplicial structure, and the quotient space is just X.

It is well known that this method can also be used to compute the fundamental group of an arbitrary topological space. This was doubtless known to Čech and Leray and explicitly appeared as a remark in a paper by Weil (1960); various other authors such as L. Calabi, W-T. Wu and N. Berikashvili have also published proofs. In the simplest case of a compact space X with a finite open covering in which all non-empty finite intersections of open sets in the covering are contractible, the fundamental group can be identified with the edge-path group of the simplicial complex corresponding to the nerve of the covering.

Read more about this topic:  Fundamental Group

Famous quotes containing the words group and/or complex:

    Just as a person who is always asserting that he is too good-natured is the very one from whom to expect, on some occasion, the coldest and most unconcerned cruelty, so when any group sees itself as the bearer of civilization this very belief will betray it into behaving barbarously at the first opportunity.
    Simone Weil (1910–1943)

    It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.
    Jimmy Carter (James Earl Carter, Jr.)