Facts
Most constructions that can be carried out in D can also be carried out in DC by performing them "componentwise", separately for each object in C. For instance, if any two objects X and Y in D have a product X×Y, then any two functors F and G in DC have a product F×G, defined by (F×G)(c) = F(c)×G(c) for every object c in C. Similarly, if ηc : F(c)→G(c) is a natural transformation and each ηc has a kernel Kc in the category D, then the kernel of η in the functor category DC is the functor K with K(c) = Kc for every object c in C.
As a consequence we have the general rule of thumb that the functor category DC shares most of the "nice" properties of D:
- if D is complete (or cocomplete), then so is DC;
- if D is an abelian category, then so is DC;
We also have:
- if C is any small category, then the category SetC of presheaves is a topos.
So from the above examples, we can conclude right away that the categories of directed graphs, G-sets and presheaves on a topological space are all complete and cocomplete topoi, and that the categories of representations of G, modules over the ring R, and presheaves of abelian groups on a topological space X are all abelian, complete and cocomplete.
The embedding of the category C in a functor category that was mentioned earlier uses the Yoneda lemma as its main tool. For every object X of C, let Hom(-,X) be the contravariant representable functor from C to Set. The Yoneda lemma states that the assignment
is a full embedding of the category C into the category Funct(Cop,Set). So C naturally sits inside a topos.
The same can be carried out for any preadditive category C: Yoneda then yields a full embedding of C into the functor category Add(Cop,Ab). So C naturally sits inside an abelian category.
The intuition mentioned above (that constructions that can be carried out in D can be "lifted" to DC) can be made precise in several ways; the most succinct formulation uses the language of adjoint functors. Every functor F : D → E induces a functor FC : DC → EC (by composition with F). If F and G is a pair of adjoint functors, then FC and GC is also a pair of adjoint functors.
The functor category DC has all the formal properties of an exponential object; in particular the functors from E × C → D stand in a natural one-to-one correspondence with the functors from E to DC. The category Cat of all small categories with functors as morphisms is therefore a cartesian closed category.
Read more about this topic: Functor Category
Famous quotes containing the word facts:
“These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.”
—Ralph Waldo Emerson (18031882)
“It is part of the educators responsibility to see equally to two things: First, that the problem grows out of the conditions of the experience being had in the present, and that it is within the range of the capacity of students; and, secondly, that it is such that it arouses in the learner an active quest for information and for production of new ideas. The new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented.”
—John Dewey (18591952)