Definition
Suppose C is a small category (i.e. the objects and morphisms form a set rather than a proper class) and D is an arbitrary category. The category of functors from C to D, written as Fun(C, D), Funct(C,D) or DC, has as objects the covariant functors from C to D, and as morphisms the natural transformations between such functors. Note that natural transformations can be composed: if μ(X) : F(X) → G(X) is a natural transformation from the functor F : C → D to the functor G : C → D, and η(X) : G(X) → H(X) is a natural transformation from the functor G to the functor H, then the collection η(X)μ(X) : F(X) → H(X) defines a natural transformation from F to H. With this composition of natural transformations (known as vertical composition, see natural transformation), DC satisfies the axioms of a category.
In a completely analogous way, one can also consider the category of all contravariant functors from C to D; we write this as Funct(Cop,D).
If C and D are both preadditive categories (i.e. their morphism sets are abelian groups and the composition of morphisms is bilinear), then we can consider the category of all additive functors from C to D, denoted by Add(C,D).
Read more about this topic: Functor Category
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)