In homological algebra, an exact functor is a functor that preserves exact sequences. Exact functors are convenient for algebraic calculations because they can be more directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.
Read more about Exact Functor: Definitions, Examples, Properties and Theorems, Generalization
Famous quotes containing the word exact:
“If we define a sign as an exact reference, it must include symbol because a symbol is an exact reference too. The difference seems to be that a sign is an exact reference to something definite and a symbol an exact reference to something indefinite.”
—William York Tindall (19031981)
Related Phrases
Related Words