In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.
An operator T is non-negative if
Read more about Friedrichs Extension: Examples, Definition of Friedrichs Extension, Krein's Theorem On Non-negative Self-adjoint Extensions
Famous quotes containing the word extension:
“Slavery is founded in the selfishness of mans natureopposition to it, is [in?] his love of justice.... Repeal the Missouri compromiserepeal all compromisesrepeal the declaration of independencerepeal all past history, you still can not repeal human nature. It still will be the abundance of mans heart, that slavery extension is wrong; and out of the abundance of his heart, his mouth will continue to speak.”
—Abraham Lincoln (18091865)