Examples
Example. Multiplication by a non-negative function on an L2 space is a non-negative self-adjoint operator.
Example. Let U be an open set in Rn. On L2(U) we consider differential operators of the form
where the functions ai j are infinitely differentiable real-valued functions on U. We consider T acting on the dense subspace of infinitely differentiable complex-valued functions of compact support, in symbols
If for each x ∈ U the n × n matrix
is non-negative semi-definite, then T is a non-negative operator. This means (a) that the matrix is hermitian and
for every choice of complex numbers c1, ..., cn. This is proved using integration by parts.
These operators are elliptic although in general elliptic operators may not be non-negative. They are however bounded from below.
Read more about this topic: Friedrichs Extension
Famous quotes containing the word examples:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)