Free Group - Free Abelian Group

Free Abelian Group

Further information: free abelian group

The free abelian group on a set S is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (F, φ), where F is an abelian group and φ: SF is a function. F is said to be the free abelian group on S with respect to φ if for any abelian group G and any function ψ: SG, there exists a unique homomorphism f: FG such that

f(φ(s)) = ψ(s), for all s in S.

The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its commutators, i.e. its abelianisation. In other words, the free abelian group on S is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group.

Read more about this topic:  Free Group

Famous quotes containing the words free and/or group:

    The doctrine that all men are, in any sense, or have been, at any time, free and equal, is an utterly baseless fiction.
    Thomas Henry Huxley (1825–95)

    The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, “Don’t do that, You will interfere with our prosperity.” And when we ask: “where is our prosperity lodged?” a certain group of gentlemen say, “With us.”
    Woodrow Wilson (1856–1924)