Free Abelian Group
Further information: free abelian groupThe free abelian group on a set S is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (F, φ), where F is an abelian group and φ: S → F is a function. F is said to be the free abelian group on S with respect to φ if for any abelian group G and any function ψ: S → G, there exists a unique homomorphism f: F → G such that
- f(φ(s)) = ψ(s), for all s in S.
The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its commutators, i.e. its abelianisation. In other words, the free abelian group on S is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group.
Read more about this topic: Free Group
Famous quotes containing the words free and/or group:
“People who wish to salute the free and independent side of their evolutionary character acquire cats. People who wish to pay homage to their servile and salivating roots own dogs.”
—Anna Quindlen (b. 1952)
“We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.”
—David Elkind (20th century)