Free Abelian Group
Further information: free abelian groupThe free abelian group on a set S is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (F, φ), where F is an abelian group and φ: S → F is a function. F is said to be the free abelian group on S with respect to φ if for any abelian group G and any function ψ: S → G, there exists a unique homomorphism f: F → G such that
- f(φ(s)) = ψ(s), for all s in S.
The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its commutators, i.e. its abelianisation. In other words, the free abelian group on S is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group.
Read more about this topic: Free Group
Famous quotes containing the words free and/or group:
“I assert that the first, and fundamental right of every woman is to be allowed the free exercise of her own belief; and that free exercise is not allowed when she is in any way restrained either morally or intellectually.”
—Margaret Anna Cusack (18291899)
“Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.”
—Jean Dubuffet (19011985)