Fragile X Syndrome - Transmission

Transmission

Fragile X syndrome has traditionally been considered an X-linked dominant condition with variable expressivity and possibly reduced penetrance. However, due to genetic anticipation and X-inactivation in females, the inheritance of Fragile X syndrome does not follow the usual pattern of X-linked dominant inheritance and some scholars have suggested discontinuing labeling X-linked disorders as dominant or recessive. Females with full FMR1 mutations may have a milder phenotype than males due to mosaicism resulting from X-inactivation.

Before the FMR1 gene was discovered, analysis of pedigrees showed the presence of male carriers who were asymptomatic, with their grandchildren affected by the condition at a higher rate than their siblings suggesting that genetic anticipation was occurring. This tendency for future generations to be affected at a higher frequency became known as the Sherman paradox after its description in 1985.

The explanation for this phenomenon is that male carriers pass on their premutation to all of their daughters, with the length of the FMR1 CGG repeat typically not increasing during meiosis, the cell division that is required to produce sperm. Incidentally, males with a full mutation only pass on premutations to their daughters. However, females with a full mutation are able to pass this full mutation on, so theoretically there is a 50% chance that a child will be affected. In addition, the length of the CGG repeat frequently does increase during meiosis in female premutation carriers due to instability and so, depending on the length of their premutation, they may pass on a full mutation to their children who will then be affected.

Read more about this topic:  Fragile X Syndrome