Divisorial Ideal
Let denote the intersection of all principal fractional ideals containing a nonzero fractional ideal I. Equivalently,
where
- (ideal quotient)
If then I is called divisorial. In other words, a divisorial ideal is a nonzero intersection of some nonempty set of fractional principal ideals. If I is divisorial and J is a nonzero fractional ideal, then I : J is divisorial.
An integral domain that satisfies the ascending chain conditions on divisorial ideals is called a Mori domain.
Read more about this topic: Fractional Ideal
Famous quotes containing the word ideal:
“The ideal reasoner, he remarked, would, when he had once been shown a single fact in all its bearings, deduce from it not only all the chain of events which led up to it but also all the results which would follow from it.”
—Sir Arthur Conan Doyle (18591930)