Fractional Ideal - Divisorial Ideal

Divisorial Ideal

Let denote the intersection of all principal fractional ideals containing a nonzero fractional ideal I. Equivalently,

where

(ideal quotient)

If then I is called divisorial. In other words, a divisorial ideal is a nonzero intersection of some nonempty set of fractional principal ideals. If I is divisorial and J is a nonzero fractional ideal, then I : J is divisorial.

An integral domain that satisfies the ascending chain conditions on divisorial ideals is called a Mori domain.

Read more about this topic:  Fractional Ideal

Famous quotes containing the word ideal:

    The desert is a natural extension of the inner silence of the body. If humanity’s language, technology, and buildings are an extension of its constructive faculties, the desert alone is an extension of its capacity for absence, the ideal schema of humanity’s disappearance.
    Jean Baudrillard (b. 1929)