Definition and Basic Results
Let R be an integral domain, and let K be its field of fractions. A fractional ideal of R is an R-submodule I of K such that there exists a non-zero r ∈ R such that rI ⊆ R. The element r can be thought of as clearing out the denominators in I. The principal fractional ideals are those R-submodules of K generated by a single nonzero element of K. A fractional ideal I is contained in R if, and only if, it is an ('integral') ideal of R.
A fractional ideal I is called invertible if there is another fractional ideal J such that IJ = R (where IJ = { a1b1 + a2b2 + ... + anbn : ai ∈ I, bi ∈ J, n ∈ Z>0 } is called the product of the two fractional ideals). The set of invertible fractional ideals form an abelian group with respect to above product, where the identity is the unit ideal R itself. This group is called the group of fractional ideals of R. The principal fractional ideals form a subgroup. A (nonzero) fractional ideal is invertible if, and only if, it is projective as an R-module.
Every finitely generated R-submodule of K is a fractional ideal and if R is noetherian these are all the fractional ideals of R.
Read more about this topic: Fractional Ideal
Famous quotes containing the words definition, basic and/or results:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Man has lost the basic skill of the ape, the ability to scratch its back. Which gave it extraordinary independence, and the liberty to associate for reasons other than the need for mutual back-scratching.”
—Jean Baudrillard (b. 1929)
“In the works of man, everything is as poor as its author; vision is confined, means are limited, scope is restricted, movements are labored, and results are humdrum.”
—Joseph De Maistre (17531821)