Definition and Basic Results
Let R be an integral domain, and let K be its field of fractions. A fractional ideal of R is an R-submodule I of K such that there exists a non-zero r ∈ R such that rI ⊆ R. The element r can be thought of as clearing out the denominators in I. The principal fractional ideals are those R-submodules of K generated by a single nonzero element of K. A fractional ideal I is contained in R if, and only if, it is an ('integral') ideal of R.
A fractional ideal I is called invertible if there is another fractional ideal J such that IJ = R (where IJ = { a1b1 + a2b2 + ... + anbn : ai ∈ I, bi ∈ J, n ∈ Z>0 } is called the product of the two fractional ideals). The set of invertible fractional ideals form an abelian group with respect to above product, where the identity is the unit ideal R itself. This group is called the group of fractional ideals of R. The principal fractional ideals form a subgroup. A (nonzero) fractional ideal is invertible if, and only if, it is projective as an R-module.
Every finitely generated R-submodule of K is a fractional ideal and if R is noetherian these are all the fractional ideals of R.
Read more about this topic: Fractional Ideal
Famous quotes containing the words definition, basic and/or results:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Insecurity, commonly regarded as a weakness in normal people, is the basic tool of the actors trade.”
—Miranda Richardson (b. 1958)
“Silence is to all creatures thus attacked the only means of salvation; it fatigues the Cossack charges of the envious, the enemys savage ruses; it results in a cruising and complete victory.”
—Honoré De Balzac (17991850)