Fractal Art - Landscapes

Landscapes

The first fractal image that was intended to be a work of art was probably the famous one on the cover of Scientific American, August 1985. This image showed a landscape formed from the potential function on the domain outside the (usual) Mandelbrot set. However, as the potential function grows fast near the boundary of the Mandelbrot set, it was necessary for the creator to let the landscape grow downwards, so that it looked as if the Mandelbrot set was a plateau atop a mountain with steep sides. The same technique was used a year after in some images in The Beauty of Fractals by Heinz-Otto Peitgen and Michael M. Richter.

In this book you can find a formula to estimate the distance from a point outside the Mandelbrot set to the boundary of the Mandelbrot set (and a similar formula for the Julia sets), and one can wonder why the creator did not use this function instead of the potential function, because it grows in a more natural way (see the formula in the articles Mandelbrot set and Julia set).

The three pictures show landscapes formed from the distance function for a family of iterations of the form . If, in a light from the sun. Then we imagine the rays are parallel (and given by two angles), and we let the colour of a point on the surface be determined by the angle between this direction and the slope of the surface at the point. The intensity (on the earth) is independent of the distance, but the light grows whiter because of the atmosphere, and sometimes the ground looks as if it is enveloped in a veil of mist (second picture). We can also let the light be "artificial", as if it issues from a lantern held by the observer. In this case the colour must grow darker with the distance (third picture).

Read more about this topic:  Fractal Art