Fourier Transform - Fourier Transform On Euclidean Space

Fourier Transform On Euclidean Space

The Fourier transform can be in any arbitrary number of dimensions n. As with the one-dimensional case, there are many conventions. For an integrable function ƒ(x), this article takes the definition:

where x and ξ are n-dimensional vectors, and x· ξ is the dot product of the vectors. The dot product is sometimes written as .

All of the basic properties listed above hold for the n-dimensional Fourier transform, as do Plancherel's and Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the Riemann–Lebesgue lemma holds. (Stein & Weiss 1971)

Read more about this topic:  Fourier Transform

Famous quotes containing the words transform and/or space:

    The inspired scribbler always has the gift for gossip in our common usage ... he or she can always inspire the commonplace with an uncommon flavor, and transform trivialities by some original grace or sympathy or humor or affection.
    Elizabeth Drew (1887–1965)

    If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.
    William James (1842–1910)