Fourier Transform - Fourier Transform On Euclidean Space

Fourier Transform On Euclidean Space

The Fourier transform can be in any arbitrary number of dimensions n. As with the one-dimensional case, there are many conventions. For an integrable function ƒ(x), this article takes the definition:

where x and ξ are n-dimensional vectors, and x· ξ is the dot product of the vectors. The dot product is sometimes written as .

All of the basic properties listed above hold for the n-dimensional Fourier transform, as do Plancherel's and Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the Riemann–Lebesgue lemma holds. (Stein & Weiss 1971)

Read more about this topic:  Fourier Transform

Famous quotes containing the words transform and/or space:

    Bees plunder the flowers here and there, but afterward they make of them honey, which is all theirs; it is no longer thyme or marjoram. Even so with the pieces borrowed from others; one will transform and blend them to make a work that is all one’s own, that is, one’s judgement. Education, work, and study aim only at forming this.
    Michel de Montaigne (1533–1592)

    The limerick packs laughs anatomical
    Into space that is quite economical,
    But the good ones I’ve seen
    So seldom are clean
    And the clean ones so seldom are comical.
    Anonymous.