Fourier Analysis - Applications

Applications

This section does not cite any references or sources.

Fourier analysis has many scientific applications – in physics, partial differential equations, number theory, combinatorics, signal processing, imaging, probability theory, statistics, option pricing, cryptography, numerical analysis, acoustics, oceanography, sonar, optics, diffraction, geometry, protein structure analysis and other areas.

This wide applicability stems from many useful properties of the transforms:

  • The transforms are linear operators and, with proper normalization, are unitary as well (a property known as Parseval's theorem or, more generally, as the Plancherel theorem, and most generally via Pontryagin duality) (Rudin 1990).
  • The transforms are usually invertible.
  • The exponential functions are eigenfunctions of differentiation, which means that this representation transforms linear differential equations with constant coefficients into ordinary algebraic ones (Evans 1998). Therefore, the behavior of a linear time-invariant system can be analyzed at each frequency independently.
  • By the convolution theorem, Fourier transforms turn the complicated convolution operation into simple multiplication, which means that they provide an efficient way to compute convolution-based operations such as polynomial multiplication and multiplying large numbers (Knuth 1997).
  • The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using Fast Fourier Transform (FFT) algorithms. (Conte & de Boor 1980)

Fourier transformation is also useful as a compact representation of a signal. For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision, and weak components are eliminated entirely, so that the remaining components can be stored very compactly. In image reconstruction, each image square is reassembled from the preserved approximate Fourier-transformed components, which are then inverse-transformed to produce an approximation of the original image.

Read more about this topic:  Fourier Analysis