A formula game is an artificial game represented by a fully quantified Boolean formula. Players' turns alternate and the space of possible moves is denoted by bound variables. If a variable is universally quantified, the formula following it has the same truth value as the formula beginning with the universal quantifier regardless of the move taken. If a variable is existentially quantified, the formula following it has the same truth value as the formula beginning with the existential quantifier for at least one move available at the turn. Turns alternate, and a player loses if he cannot move at his turn. In computational complexity theory, the language FORMULA-GAME is defined as all formulas such that Player 1 has a winning strategy in the game represented by . FORMULA-GAME is PSPACE-complete.
Famous quotes containing the words formula and/or game:
“Hidden away amongst Aschenbachs writing was a passage directly asserting that nearly all the great things that exist owe their existence to a defiant despite: it is despite grief and anguish, despite poverty, loneliness, bodily weakness, vice and passion and a thousand inhibitions, that they have come into being at all. But this was more than an observation, it was an experience, it was positively the formula of his life and his fame, the key to his work.”
—Thomas Mann (18751955)
“In the game of Whist for two, usually called Correspondence, the lady plays what card she likes: the gentleman simply follows suit. If she leads with Queen of Diamonds, however, he may, if he likes, offer the Ace of Hearts: and, if she plays Queen of Hearts, and he happens to have no Heart left, he usually plays Knave of Clubs.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)