Properties
It can be verified that:
- Formal differentiation is linear: for any two polynomials f(x), g(x) and elements r, s of R, we have
- When R is not commutative there is another, different linearity property in which r and s appear on the right rather than on the left. When R does not contain an identity element then neither of these reduces to the case of simply a sum of polynomials or the sum of a polynomial with a multiple of another polynomial, which must also be included as a "linearity" property.
- The formal derivative satisfies the Leibniz rule, or product rule:
- Note the order of the factors; when R is not commutative this is important.
These two properties make D a derivation on A (see also module of relative differential forms for a discussion of a generalization).
Read more about this topic: Formal Derivative
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)