In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions.
Read more about Formal Power Series: Introduction, The Ring of Formal Power Series, Applications, Interpreting Formal Power Series As Functions, Examples and Related Topics
Famous quotes containing the words formal, power and/or series:
“Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, Do you think the Holy Dove could fly down with only one wing?”
—Horace Walpole (17171797)
“The power of hope upon human exertion, and happiness, is wonderful.”
—Abraham Lincoln (18091865)
“Life ... is not simply a series of exciting new ventures. The future is not always a whole new ball game. There tends to be unfinished business. One trails all sorts of things around with one, things that simply wont be got rid of.”
—Anita Brookner (b. 1928)