Definition
The definition of a formal derivative is as follows: fix a ring R (not necessarily commutative) and let A = R be the ring of polynomials over R. Then the formal derivative is an operation on elements of A, where if
then its formal derivative is
just as for polynomials over the real or complex numbers.
Read more about this topic: Formal Derivative
Famous quotes containing the word definition:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)