Formal Derivative - Application To Finding Repeated Factors

Application To Finding Repeated Factors

As in calculus, the derivative detects multiple roots: if R is a field then R is a Euclidean domain, and in this situation we can define multiplicity of roots; namely, for every polynomial f(x) and every element r of R, there exists a nonnegative integer mr and a polynomial g(x) such that

where g(r) is not equal to 0. mr is the multiplicity of r as a root of f. It follows from the Leibniz rule that in this situation, mr is also the number of differentiations that must be performed on f(x) before r is not a root of the resulting polynomial. The utility of this observation is that although in general not every polynomial of degree n in R has n roots counting multiplicity (this is the maximum, by the above theorem), we may pass to field extensions in which this is true (namely, algebraic closures). Once we do, we may uncover a multiple root that was not a root at all simply over R. For example, if R is the field with three elements, the polynomial

has no roots in R; however, its formal derivative is zero since 3 = 0 in R and in any extension of R, so when we pass to the algebraic closure it has a multiple root that could not have been detected by factorization in R itself. Thus, formal differentiation allows an effective notion of multiplicity. This is important in Galois theory, where the distinction is made between separable field extensions (defined by polynomials with no multiple roots) and inseparable ones.

Read more about this topic:  Formal Derivative

Famous quotes containing the words application to, application, finding, repeated and/or factors:

    Preaching is the expression of the moral sentiment in application to the duties of life.
    Ralph Waldo Emerson (1803–1882)

    There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.
    François, Duc De La Rochefoucauld (1613–1680)

    With two sons born eighteen months apart, I operated mainly on automatic pilot through the ceaseless activity of their early childhood. I remember opening the refrigerator late one night and finding a roll of aluminum foil next to a pair of small red tennies. Certain that I was responsible for the refrigerated shoes, I quickly closed the door and ran upstairs to make sure I had put the babies in their cribs instead of the linen closet.
    Mary Kay Blakely (20th century)

    Once Vogue showed two or three dresses for stout women, but we were so shaken by the experience we haven’t repeated it in fifty-seven years. Today ... we must acknowledge that a lady may grow mature, but she never grows fat.
    Edna Woolman Chase (1877–1957)

    I always knew I wanted to be somebody. I think that’s where it begins. People decide, “I want to be somebody. I want to make a contribution. I want to leave my mark here.” Then different factors contribute to how you will do that.
    Faith Ringgold (b. 1934)