Flood Fill - Fixed Memory Method (right-hand Fill Method)

Fixed Memory Method (right-hand Fill Method)

A method exists that uses essentially no memory for four-connected regions by pretending to be a painter trying to paint the region without painting himself into a corner. This is also a method for solving mazes. The four pixels making the primary boundary are examined to see what action should be taken. The painter could find themselves in one of several conditions:

  1. All four boundary pixels are filled.
  2. Three of the boundary pixels are filled.
  3. Two of the boundary pixels are filled.
  4. One boundary pixel is filled.
  5. Zero boundary pixels are filled.

Where a path or boundary is to be followed, the right-hand rule is used. The painter follows the region by placing their right-hand on the wall (the boundary of the region) and progressing around the edge of the region without removing their hand.

For case #1, the painter paints (fills) the pixel the painter is standing upon and stops the algorithm.

For case #2, a path leading out of the area exists. Paint the pixel the painter is standing upon and move in the direction of the open path.

For case #3, the two boundary pixels define a path which, if we painted the current pixel, may block us from ever getting back to the other side of the path. We need a "mark" to define where we are and which direction we are heading to see if we ever get back to exactly the same pixel. If we already created such a "mark", then we preserve our previous mark and move to the next pixel following the right-hand rule.

A mark is used for the first 2-pixel boundary that is encountered to remember where the passage started and in what direction the painter was moving. If the mark is encountered again and the painter is traveling in the same direction, then the painter knows that it is safe to paint the square with the mark and to continue in the same direction. This is because (through some unknown path) the pixels on the other side of the mark can be reached and painted in the future. The mark is removed for future use.

If the painter encounters the mark but is going in a different direction, then some sort of loop has occurred which caused the painter to return to the mark. This loop must be eliminated. The mark is picked up and the painter then proceeds in the direction indicated previously by the mark using a left-hand rule for the boundary (similar to the right-hand rule but using the painter's left hand). This continues until an intersection is found (with three or more open boundary pixels). Still using the left-hand rule the painter now searches for a simple passage (made by two boundary pixels). Upon finding this two-pixel boundary path, that pixel is painted. This breaks the loop and allows the algorithm to continue.

For case #4, we need to check the opposite 8-connected corners to see if they are filled or not. If either or both are filled, then this creates a many-path intersection and cannot be filled. If both are empty, then the current pixel can be painted and the painter can move following the right-hand rule.

The algorithm trades time for memory. For simple shapes it is very efficient. However, if the shape is complex with many features, the algorithm spends a large amount of time tracing the edges of the region trying to ensure that all can be painted.

This algorithm was first available commercially in 1981 on a Vicom Image Processing system manufactured by Vicom Systems, Inc. The classic recursive flood fill algorithm was available on this system as well.

Read more about this topic:  Flood Fill

Famous quotes containing the words fixed, memory, method and/or fill:

    ... social evils are dangerously contagious. The fixed policy of persecution and injustice against a class of women who are weak and defenseless will be necessarily hurtful to the cause of all women.
    Fannie Barrier Williams (1855–1944)

    For my name and memory I leave it to men’s charitable speeches, and to foreign nations, and the next ages.
    Francis Bacon (1561–1626)

    You that do search for every purling spring
    Which from the ribs of old Parnassus flows,
    And every flower, not sweet perhaps, which grows
    Near thereabouts into your poesy wring;
    You that do dictionary’s method bring
    Into your rhymes, running in rattling rows;
    Sir Philip Sidney (1554–1586)

    Comforted
    a solace of ripe plums
    seeming to fill the air
    They taste good to her
    William Carlos Williams (1883–1963)