Case of Commutative Rings
For any multiplicatively closed subset S of R, the localization ring is flat as an R-module.
When R is Noetherian and M is a finitely-generated R-module, being flat is the same as being locally free in the following sense: M is a flat R-module if and only if for every prime ideal (or even just for every maximal ideal) P of R, the localization is free as a module over the localization .
If S is an R-algebra, i.e., we have a homomorphism, then S has the structure of an R-module, and hence it makes sense to ask if S is flat over R. If this is the case, then S is faithfully flat over R if and only if every prime ideal of R is the inverse image under f of a prime ideal in S. In other words, if and only if the induced map is surjective.
Flat modules over commutative rings are always torsion-free. Projective modules (and thus free modules) are always flat. For certain common classes of rings, these statements can be reversed (for example, every torsion-free module over a Dedekind ring is automatically flat and flat modules over perfect rings are always projective), as is subsumed in the following diagram of module properties:
Read more about this topic: Flat Module
Famous quotes containing the words case of, case and/or rings:
“The bond between a man and his profession is similar to that which ties him to his country; it is just as complex, often ambivalent, and in general it is understood completely only when it is broken: by exile or emigration in the case of ones country, by retirement in the case of a trade or profession.”
—Primo Levi (19191987)
“When a thing is said to be not worth refuting you may be sure that either it is flagrantly stupidin which case all comment is superfluousor it is something formidable, the very crux of the problem.”
—Miguel de Unamuno (18641936)
“It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.”
—Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)