Non-finitely Generated Abelian Groups
Note that not every abelian group of finite rank is finitely generated; the rank 1 group is one counterexample, and the rank-0 group given by a direct sum of countably infinitely many copies of is another one.
Read more about this topic: Finitely-generated Abelian Group
Famous quotes containing the words generated and/or groups:
“It is precisely the purpose of the public opinion generated by the press to make the public incapable of judging, to insinuate into it the attitude of someone irresponsible, uninformed.”
—Walter Benjamin (18921940)
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)