Non-finitely Generated Abelian Groups
Note that not every abelian group of finite rank is finitely generated; the rank 1 group is one counterexample, and the rank-0 group given by a direct sum of countably infinitely many copies of is another one.
Read more about this topic: Finitely-generated Abelian Group
Famous quotes containing the words generated and/or groups:
“Here [in London, history] ... seemed the very fabric of things, as if the city were a single growth of stone and brick, uncounted strata of message and meaning, age upon age, generated over the centuries to the dictates of some now all-but-unreadable DNA of commerce and empire.”
—William Gibson (b. 1948)
“Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy cloudsthe greyhounds of heaven.”
—Vladimir Nabokov (18991977)