Number of Groups of A Given Order
Given a positive integer n, it is not at all a routine matter to determine how many isomorphism types of groups of order n there are. Every group of prime order is cyclic, since Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If n is the square of a prime, then there are exactly two possible isomorphism types of group of order n, both of which are abelian. If n is a higher power of a prime, then results of Graham Higman and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order n, and the number grows very rapidly as the power increases.
Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p-1 not divisible by q. For a necessary and sufficient condition, see cyclic number.
If n is squarefree, then any group of order n is solvable. A theorem of William Burnside, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order n is solvable when n is odd.
For every positive integer n, most groups of order n are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the classification of finite simple groups. For any positive integer n there are at most two simple groups of order n, and there are infinitely many positive integers n for which there are two non-isomorphic simple groups of order n.
Read more about this topic: Finite Group
Famous quotes containing the words number of, number, groups and/or order:
“I have known a number of Don Juans who were good studs and who cavorted between the sheets without a psychiatrist to guide them. But most of the busy love-makers I knew were looking for masculinity rather than practicing it. They were fellows of dubious lust.”
—Ben Hecht (18931964)
“I cant quite define my aversion to asking questions of strangers. From snatches of family battles which I have heard drifting up from railway stations and street corners, I gather that there are a great many men who share my dislike for it, as well as an equal number of women who ... believe it to be the solution to most of this worlds problems.”
—Robert Benchley (18891945)
“Belonging to a group can provide the child with a variety of resources that an individual friendship often cannota sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social lifeof inclusion and exclusion, conformity and independence.”
—Zick Rubin (20th century)
“Today Americans are overcome not by the sense of endless possibility but by the banality of the social order they have erected against it.”
—Christopher Lasch (b. 1932)