Finite Group - Number of Groups of A Given Order

Number of Groups of A Given Order

Given a positive integer n, it is not at all a routine matter to determine how many isomorphism types of groups of order n there are. Every group of prime order is cyclic, since Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If n is the square of a prime, then there are exactly two possible isomorphism types of group of order n, both of which are abelian. If n is a higher power of a prime, then results of Graham Higman and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order n, and the number grows very rapidly as the power increases.

Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p-1 not divisible by q. For a necessary and sufficient condition, see cyclic number.

If n is squarefree, then any group of order n is solvable. A theorem of William Burnside, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order n is solvable when n is odd.

For every positive integer n, most groups of order n are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the classification of finite simple groups. For any positive integer n there are at most two simple groups of order n, and there are infinitely many positive integers n for which there are two non-isomorphic simple groups of order n.

Read more about this topic:  Finite Group

Famous quotes containing the words number of, number, groups and/or order:

    The basis of successful relief in national distress is to mobilize and organize the infinite number of agencies of self help in the community. That has been the American way.
    Herbert Hoover (1874–1964)

    There is not to be found, in all history, any miracle attested by a sufficient number of men, of such unquestioned good sense, education, and learning, as to secure us against all delusion in themselves ... beyond all suspicion of any design to deceive others ... and at the same time attesting facts, performed in such a public manner, and in so celebrated a part of the world, as to render the detection unavoidable.
    David Hume (1711–1776)

    In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.
    George Gurdjieff (c. 1877–1949)

    If it were not somewhat fanciful to suppose that every human excellence is presented, as it were, in one kind of being, we might believe that the whole treasure of morality and order is enshrined in the female character.
    Karl Wilhelm Von Humboldt (1767–1835)