Number of Groups of A Given Order
Given a positive integer n, it is not at all a routine matter to determine how many isomorphism types of groups of order n there are. Every group of prime order is cyclic, since Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If n is the square of a prime, then there are exactly two possible isomorphism types of group of order n, both of which are abelian. If n is a higher power of a prime, then results of Graham Higman and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order n, and the number grows very rapidly as the power increases.
Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p-1 not divisible by q. For a necessary and sufficient condition, see cyclic number.
If n is squarefree, then any group of order n is solvable. A theorem of William Burnside, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order n is solvable when n is odd.
For every positive integer n, most groups of order n are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the classification of finite simple groups. For any positive integer n there are at most two simple groups of order n, and there are infinitely many positive integers n for which there are two non-isomorphic simple groups of order n.
Read more about this topic: Finite Group
Famous quotes containing the words number of, number, groups and/or order:
“The genius of democracies is seen not only in the great number of new words introduced but even more in the new ideas they express.”
—Alexis de Tocqueville (18051859)
“The growing good of the world is partly dependent on unhistoric acts; and that things are not so ill with you and me as they might have been, is half owing to the number who lived faithfully a hidden life, and rest in unvisited tombs.”
—George Eliot [Mary Ann (or Marian)
“The awareness of the all-surpassing importance of social groups is now general property in America.”
—Johan Huizinga (18721945)
“Pleasure cannot be shared; like Pain, it can only be experienced or inflicted, and when we give pleasure to our Lovers or bestow Charity upon the Needy, we do so, not to gratify the object of our Benevolence, but only ourselves. For the Truth is that we are kind for the same reason as we are cruel, in order that we may enhance the sense of our own Power.”
—Aldous Huxley (18941963)