Field Trace

In mathematics, the field trace is a function defined with respect to a finite field extension L/K. It is a K-linear map from L to K. As an example, if L/K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e.

where Gal(L/K) denotes the Galois group of L/K.

For a general finite extension L/K, the trace of an element α can be defined as the trace of the K-linear map "multiplication by α", that is, the map from L to itself sending x to αx. If L/K is inseparable, then the trace map is identically 0.

When L/K is separable, a formula similar to the Galois case above can be obtained. If σ1, ..., σn are the distinct K-linear field embeddings of L into an algebraically closed field F containing K (where n is the degree of the extension L/K), then

Read more about Field Trace:  Properties of The Trace, Trace Form

Famous quotes containing the words field and/or trace:

    The frequent failure of men to cultivate their capacity for listening has a profound impact on their capacity for parenting, for it is mothers more than fathers who are most likely to still their own voices so they may hear and draw out the voices of their children.
    —Mary Field Belenky (20th century)

    Superstition saw
    Something it had never seen before:
    Brown eyes that loved without a trace of fear,
    Beauty so sudden for that time of year.
    Jean Toomer (1894–1967)