In mathematics, the field trace is a function defined with respect to a finite field extension L/K. It is a K-linear map from L to K. As an example, if L/K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e.
where Gal(L/K) denotes the Galois group of L/K.
For a general finite extension L/K, the trace of an element α can be defined as the trace of the K-linear map "multiplication by α", that is, the map from L to itself sending x to αx. If L/K is inseparable, then the trace map is identically 0.
When L/K is separable, a formula similar to the Galois case above can be obtained. If σ1, ..., σn are the distinct K-linear field embeddings of L into an algebraically closed field F containing K (where n is the degree of the extension L/K), then
Read more about Field Trace: Properties of The Trace, Trace Form
Famous quotes containing the words field and/or trace:
“The snow had begun in the gloaming,
And busily all the night
Had been heaping field and highway
With a silence deep and white.”
—James Russell Lowell (18191891)
“What terrible questions we are learning to ask! The former men believed in magic, by which temples, cities, and men were swallowed up, and all trace of them gone. We are coming on the secret of a magic which sweeps out of mens minds all vestige of theism and beliefs which they and their fathers held and were framed upon.”
—Ralph Waldo Emerson (18031882)