In mathematics, the field trace is a function defined with respect to a finite field extension L/K. It is a K-linear map from L to K. As an example, if L/K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e.
where Gal(L/K) denotes the Galois group of L/K.
For a general finite extension L/K, the trace of an element α can be defined as the trace of the K-linear map "multiplication by α", that is, the map from L to itself sending x to αx. If L/K is inseparable, then the trace map is identically 0.
When L/K is separable, a formula similar to the Galois case above can be obtained. If σ1, ..., σn are the distinct K-linear field embeddings of L into an algebraically closed field F containing K (where n is the degree of the extension L/K), then
Read more about Field Trace: Properties of The Trace, Trace Form
Famous quotes containing the words field and/or trace:
“There is a call to life a little sterner,
And braver for the earner, learner, yearner.
Less criticism of the field and court
And more preoccupation with the sport.”
—Robert Frost (18741963)
“We can trace almost all the disasters of English history to the influence of Wales.”
—Evelyn Waugh (19031966)