When L/K is separable, the trace provides a duality theory via the trace form: the map from L × L to K sending (x, y) to TrL/K(xy) is a nondegenerate, symmetric, bilinear form called the trace form. An example of where this is used is in algebraic number theory in the theory of the different ideal.
The trace form for a finite degree field extension L/K has non-negative signature for any field ordering of K. The converse, that every Witt equivalence class with non-negative signature contains a trace form, is true for algebraic number fields K.
Read more about this topic: Field Trace
Famous quotes containing the words trace and/or form:
“Emancipation should make it possible for woman to be human in the truest sense. Everything within her that craves assertion and activity should reach its fullest expression; all artificial barriers should be broken, and the road towards greater freedom cleared of every trace of centuries of submission and slavery.”
—Emma Goldman (18691940)
“Patience. A minor form of despair disguised as a virtue.”
—Ambrose Bierce (18421914)