Formal Definitions
1. Let K be a field and L a finite extension (and hence an algebraic extension) of K. Multiplication by α, an element of L, is a K-linear transformation
That is, L is viewed as a vector space over K, and mα is a linear transformation of this vector space into itself. The norm NL/K(α) is defined as the determinant of this linear transformation. Properties of the determinant imply that the norm belongs to K and
- NL/K(αβ) = NL/K(α)NL/K(β)
so that the norm, when considered on non-zero elements, is a group homomorphism from the multiplicative group of L to that of K.
2. If L/K is a Galois extension, the norm NL/K of an element α of L is the product of all the conjugates
- g(α)
of α, for g in the Galois group G of L/K.
Read more about this topic: Field Norm
Famous quotes containing the words formal and/or definitions:
“The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.”
—David Elkind (20th century)
“The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babiesif they take the time and make the effort to learn how. Its that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.”
—Pamela Patrick Novotny (20th century)