Fiber Bundle - Bundle Maps

Bundle Maps

It is useful to have notions of a mapping between two fiber bundles. Suppose that M and N are base spaces, and πE : EM and πF : FN are fiber bundles over M and N, respectively. A bundle map (or bundle morphism) consists of a pair of continuous functions

such that . That is, the following diagram commutes:

For fiber bundles with structure group G (such as a principal bundle), bundle morphisms are also required to be G-equivariant on the fibers.

In case the base spaces M and N coincide, then a bundle morphism over M from the fiber bundle πE : EM to πF : FM is a map φ : EF such that . That is, the diagram commutes

A bundle isomorphism is a bundle map which is also a homeomorphism.

Read more about this topic:  Fiber Bundle

Famous quotes containing the words bundle and/or maps:

    “There is Lowell, who’s striving Parnassus to climb
    With a whole bale of isms tied together with rhyme,
    He might get on alone, spite of brambles and boulders,
    But he can’t with that bundle he has on his shoulders,
    The top of the hill he will ne’er come nigh reaching
    Till he learns the distinction ‘twixt singing and preaching;
    James Russell Lowell (1819–1891)

    And at least you know

    That maps are of time, not place, so far as the army
    Happens to be concerned—the reason being,
    Is one which need not delay us.
    Henry Reed (1914–1986)