False Position Method - Numerical Analysis

Numerical Analysis

In numerical analysis, double false position became a root-finding algorithm that combines features from the bisection method and the secant method.

Like the bisection method, the false position method starts with two points a0 and b0 such that f(a0) and f(b0) are of opposite signs, which implies by the intermediate value theorem that the function f has a root in the interval, assuming continuity of the function f. The method proceeds by producing a sequence of shrinking intervals that all contain a root of f.

At iteration number k, the number

is computed. As explained below, ck is the root of the secant line through (ak, f(ak)) and (bk, f(bk)). If f(ak) and f(ck) have the same sign, then we set ak+1 = ck and bk+1 = bk, otherwise we set ak+1 = ak and bk+1 = ck. This process is repeated until the root is approximated sufficiently well.

The above formula is also used in the secant method, but the secant method always retains the last two computed points, while the false position method retains two points which certainly bracket a root. On the other hand, the only difference between the false position method and the bisection method is that the latter uses ck = (ak + bk) / 2.

Read more about this topic:  False Position Method

Famous quotes containing the words numerical and/or analysis:

    The moment a mere numerical superiority by either states or voters in this country proceeds to ignore the needs and desires of the minority, and for their own selfish purpose or advancement, hamper or oppress that minority, or debar them in any way from equal privileges and equal rights—that moment will mark the failure of our constitutional system.
    Franklin D. Roosevelt (1882–1945)

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)