The bisection method in mathematics is a root-finding method which repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods. The method is also called the binary search method or the dichotomy method.
Read more about Bisection Method: The Method, Example: Finding The Root of A Polynomial, Analysis, Pseudocode
Famous quotes containing the word method:
“... the one lesson in the ultimate triumph of any great actress has been to enforce the fact that a method all technique or a method all throes, is either one or the other inadequate, and often likely to work out in close proximity to the ludicrous.”
—Mrs. Leslie Carter (18621937)