Weak Factorization Systems
Suppose e and m are two morphisms in a category C. Then e has the left lifting property with respect to m (resp. m has the right lifting property with respect to e) when for every pair of morphisms u and v such that ve=mu there is a morphism w such that the following diagram commutes. The difference with orthogonality is that w is not necessarily unique.
A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that :
- The class E is exactly the class of morphisms having the left lifting property wrt the morphisms of M.
- The class M is exactly the class of morphisms having the right lifting property wrt the morphisms of E.
- Every morphism f of C can be factored as for some morphisms and .
Read more about this topic: Factorization System
Famous quotes containing the words weak and/or systems:
“It is the weak and confused who worship the pseudosimplicities of brutal directness.”
—Marshall McLuhan (19111980)
“Before anything else, we need a new age of Enlightenment. Our present political systems must relinquish their claims on truth, justice and freedom and have to replace them with the search for truth, justice, freedom and reason.”
—Friedrich Dürrenmatt (19211990)